Практическая работа Отладка проектов при помощи Simulation WaveForm

<u>Цель:</u>

Изучить основные приемы использования утилиты Simulation WaveForm и методику тестирования схем

<u>Задачи:</u>

Научится использовать утилиту Simulation WaveForm Получить практические навыки отслеживания работы схем. Получить навыки разработки методики тестирования схем <u>Литература и прочие источники</u>: <u>Quick-Start for Intel Quartus Prime Pro Edition Software, Intel</u> <u>Quartus Prime Pro Edition User Guide: Getting Started, Программирование на языке Verilog,</u> <u>Пошаговая инструкция для Quartus II: Симуляция проекта</u>

Запуск Simulation WaveForm

Утилита Simulation WaveForm входит в состав QuartusPrimeProII. Она позволяет имитировать сигналы на входных портах устройства и отслеживать изменение сигналов как на выходных портах так и на внутренних линиях.

Перед использованием Simulation WaveForm необходимо:

- 1. Скомпилировать проект как минимум до этапа Analysis&Synthesis
- 2. Подключить к проекту утилиту EDA. Для этого открыть диалоговое окно Assignments\ Settings. В категории EDA Tool Settings найти раздел Simulation и выбрать там утилиту. Для бесплатной версии QuartusPrimeProII в комплекте поставляется ModelSim-Intel FPGA
- 3. Создать список соединений (*Netlist*) для функциональной симуляции. Для этого выполнить в панели задач компиляции пункт EDA Netlist Writer и убедится что список создан.

Рисунок 1: Подключение EDA симулятора

Рисунок 2: Отчет об успешном создании netlist

Запуск утилиты

Создать новый файл симуляции ProjectFiles New \rightarrow University Program VWF (в ранних версиях Vector Waveform File)

Рисунок 3: Создание файла

Откроется окно редактора симуляции

В дальнейшем, чтобы открыть сохраненную симуляцию, ее можно выбрать в ProjectNavigator

🕞 Simulation Waveform Editor - D:/intelFPGA_pro/MyProject/wf1/wavefrom1 - wavefrom1 - [Wavefor 🗕 🗖 🔤 💴										
Eile Edit View Simulation Help Задание сигналов Функциональная симуляция ch Intel FPGA										
💽 🝳 🐹 🕹 九 🚄 ХІ ЖЕ ЖЕ ХЕ ХЕ ХЕ 🕅 👯 🚓 🗐 👯 ВременнАя симуляция										
Master Time Bar: 0	Master Time Bar: 0 ps • Pointer: 1.75 ns Interval: 1.75 ns Start: End:									
		0								
Name	Value at	D ps	160,0 ns	320 _, 0 ns	480 _, 0 ns	640.0 ns	800,0 ns	960.0 ns		

Рисунок 4: Окно редактора симуляции

Настройка симуляции

В симуляцию нужно добавить узлы и шины которые будут симулироваться или отслеживаться.

- Щелкнуть ПКМ в списке узлов и шин
- Выбрать Insert Node or Bus
- Нажать **NodeFinder...** выбрать из списка название узла или шины. Или ввести в поле Name полное название узла или шины.
- Если использован NodeFinder то в его окне нажать кнопку List и перенести нужные объекты в список **Selected Nodes**

Master Time bar. [u he		Pointer. 041.90	interva	at. 041.90115	Start.	Enu.		
	Value at	0 ps	160,0 ns	320,0 ns	480,0 ns	640,0 ns	800,0 ns	960.0 ns	
Name	0 ps) ps			S		Nod	e Finder	×
					Парам	етры фильтр	рации спис	ка узлов	
	3	Insert	Node or Bus	×	Named: *	47-	Filter: P	Pins: all	• ОК
	Name:	Use Node F	nder to insert	ок	Look in: 🔹	/			List Cancel
	Туре:	INPUT	•	Cancel	Nodes Found:			Selected Nodes:	
	Value type:	9-Level	•		Name	Typ	e	Name • Добавить узел в	Туре список выбранных
	Radix:	Binary	•	Node Finder	🍃 d	Input Group		>	
	Bus width:	1		1	" <mark>-</mark> d[0] i <mark>"</mark> - d[1]	Input Input	[>>	
	Start index:	0		4	" <mark>-</mark> d[2]	Input		<	
	Display a		unt as binary cou	nt	🖕 d[3]	Input		<<	
					" d[4]	Input			

Рисунок 5: Добавление узлов

Чтобы отобразить в списке внутренние узлы нужно в выпадающем списке Filter выбрать **Design Entity (all names)**

ile	<u>E</u> dit <u>V</u> iew	Simulation H	elp					Search Intel F	PGA
	Q 🔉 d	· . · · ·	$\langle \overline{H} M \rangle$	C X X X	R 🕺 🊈 🛛				
4astei	r Time Bar:	ps	• •	Pointer: 3.51 r	ns Interval:	3.51 ns	Start: 0 ps	End	0 ps
	Name	Value at 0 ps	0 ps 0 ps	160 _, 0 ns	320 _, 0 ns	480,0 ns	640,0 ns	800,0 ns	960.0 n
-	clk	в 0							
-	≻ d	B 00000000				0000000			
ut	▶ qa	BXXXXXXXX				xxxxxxxx			

Рисунок 6: Результат добавления узлов

Задание сигналов

Для добавленных узлов можно задать сигналы. Для этого выбрать узел и нажать соответствующую кнопку в панели инструментов.

Например можно задать тактовый сигнал используя кнопку **OverwriteClock** В диалоговом окне мы сможем указать период, смещение и коэффициент заполнения. *Коэффициент заполнения — величина обратная скважности.* Показывает отношение длительности импульса к периоду следования

Рисунок 7: Создание тактового сигнала

۲					Sir	mulation Waveform B	ditor - D:/intelf	PGA_pro/MyProj	ect/wf1/wavefrom			
Eil	<u>Eile Edit View Simulation H</u> elp											
# (▶ 🔍 : 🏡 관 : 九 🍊)江)冱 : ﷺ)/ē 🗷)/2)/ē 😪 式 🍋 📾 際											
Ma	ster Time Bar: 0	ps		•	Pointer:	2.13 ns		Interval: 2.13 ns	;			
	Name	Value at	0 ps 80.0) ns	160 _, 0 ns	240,0 ns	320 _i 0 ns	400 _, 0 ns	480,0 ns			
		0 ps	0 ps									
in		в 0		սոսո	www		ուսու	որորու	MMMM			
jn jn	≠ ▶ d	B 10000110							10000110			
ou	🕨 qa	BXXXXXXXX	×××××××	_X		11111111		X				
in	up_down	в 0										

Рисунок 8: Симуляция после определения входных сигналов

Задание времени симуляции

Можно ограничить время симуляции. Для этого выбрать Edit\Set End Time

<u>E</u> dit	View	Simulation	<u>H</u> elp	
\times	Delete			Del
	nsert			Þ
,	Value			•
	Grouping	g		+
	Reverse	Group or Bus	Bit Order	
	Radix			•
	Gr <u>i</u> d Size			
	Set End ⁻	Time		
✓ :	Snap to (Grid		

Запуск симуляции

В WaveFrom поддерживается два вида симуляции: функциональная и временная. Функциональная симуляция позволяет проверить логику работы. С ее помощью можно убедиться, что проект может и должен работать так как задумано. Прежде всего нужно делать именно функциональную симуляцию.

Временная симуляция позволяет увидеть сигналы с учетом всех возникающих задержек сигнала между элементами, входами и выходами. *Временную симуляцию делают в последнюю очередь*, уже после функциональной симуляции, чтобы убедиться, что схема может работать на нужной заданной частоте.

Для запуска симуляции нужно нажать соответствующую кнопку в панели инструментов.

Рисунок 9: Процесс симуляции

Результат симуляции откроется в новом окне

3				Simulation Wavefo	orm Editor - D	:/intelFPGA_pro/My	Project/wf1/w	avefrom1 - wavefror	m1 - [wavefrom1_20		
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	Simulation H	elp								
	▶ Q 蒸 凸 九 프 江 冱 꽳 Xē Zē Vē I 唬 唬 為 圖 账										
Master Time Bar. 0 ps Pointer: 332.43 ns Interval: 332.43 ns											
	Name	Value at 0 ps	s 340,0 ns	350 _, 0 ns	360 _i 0 ns	370 _i 0 ns	380 _, 0 ns	390 _, 0 ns	400,0 ns		
in •-	clk	во									
i	▶ d	B 10000110									
<u>eut</u>	▶ qa	B 00000000	1 <u>00001110</u>	00001111	00010000	χ 00010001 χ	00010010	X 00010011	X 00010100 X		
in ■-	up_down	ВО									

Рисунок 10: Результат симуляции

<u>Задание №1.</u>

<u>Ход работы</u>:

Загрузить в редактор симуляции любой проект.

Выяснить назначение кнопок задания сигнала. Если при задании сигнала нужно определить параметры — выяснить значение параметров.

<u>В отчет</u> Описание кнопок и иллюстрацию их работы

<u>Задание №2.</u> Создать проект, синтезирующий схему по формуле двунаправленного счетчика: (input [7:0] d, input clk, up_down,

```
output reg [7:0] qa);
integer direction;
always @(posedge clk)
begin
if (up_down) direction = 1;
else direction = -1;
qa = qa + direction;
```

end

Разработать набор сигналов для симуляции работы счетчика. Разработанный набор сигналов долже обеспечивать проверку всех рабочих и критических состоянии устройства:

- начало отсчета
- процесс отсчета с увеличением
- реакция на переполнение
- процесс отсчета с увеличением после переполнения
- процесс отсчета с уменьшением если начальное значение 0
- процесс отсчета с уменьшением

Задать время симуляции достаточное для проверки всех состояний

Выполнить симуляцию и на основании полученных данных доказать, что счетчик работает корректно.

<u>В отчет</u>: Схема RTL. Описание сигналов используемых в симуляции. Описание параметров симуляции. Иллюстрации с результатами симуляции. Доказательство того, что счетсик работает верно.