17.12.2014 1/0 ports and Hardware Interrupts

I/0 ports and Hardware Interrupts

The emulator does not reproduce any input/output devices of the original IBM PC
®, however theoretically it may be possible to create emulation of the original
ibm pc devices. emu8086 supports user-created virtual devices that can be
accessed from assembly language program using in and out instructions.
devices that can be created by anyone with basic programming experience in
any high or low level programming language. the simplest virtual device in
assembly language can be found in examples: simplest.asm

Input / Output ports

emu8086 supports additional devices that can be created by anyone with basic
programming experience in any language device can be written in any language,
such as: java, visual basic, vc++, delphi, c#, .net or in any other programming
language that allow to directly read and write files. for more information and
sample source code look inside this folder:
c:\emu8086\DEVICES\DEVELOPER\

The latest version of the emulator has no reserved or fixed I/O ports, input /
output addresses for custom devices are from 0000 to OFFFFh (0 to 65535),
but it is important that two devices that use the same ports do not run
simultaneously to avoid hardware conflict.

Port 100 corresponds to byte 100 in this file: c:\emu8086.io , port 0 to byte 0,
port 101 to byte 101, etc...

Emulation of Hardware Interrupts

External hardware interrupts can be triggered by external peripheral devices and
microcontrollers or by the 8087 mathematical coprocessor.

Hardware interrupts are disabled when interrupt flag (IF) is set to 0. when
interrupt flag is set to 1, the emulator continually checks first 256 bytes of this
file c:\emu8086.hw if any of the bytes is none-zero the microprocessor
transfers control to an interrupt handler that matches the triggering byte offset
in emu8086.hw file (0 to 255) according to the interrupt vector table
(memory 0000-0400h) and resets the byte in emu8086.hw to 00.

These instructions can be used to disable and enable hardware interrupts:

cli - clear interrupt flag (disable hardware interrupts).
sti - set interrupt flag (enable hardware interrupts).

http://www itipacinotti.gov.it/pagine/sistemi2008/documentation_emulator/io.html 1/7

17.12.2014 1/0 ports and Hardware Interrupts
by default hardware interrupts are enabled and are disabled automatically when

software or hardware interrupt is in the middle of the execution.
Examples of Custom I/0O Devices

Ready devices are available from virtual devices menu of the emulator.

« Traffic Lights - port 4 (word)

the traffic lights are controlled by sending data to i/o port 4.
there are 12 lamps: 4 green, 4 yellow, and 4 red.

you can set the state of each lamp by setting its bit:

1 - the lamp is turned on.
0 - the lamp is turned off.

only 12 low bits of a word are used (0 to 11), last bits (12 to 15) are
unused.

for example:

MOV AX, 0000001011110100b
OUT 4, AX

inl

FEDCBA9B765432210
B@118680811088

we use yellow hexadecimal digits in caption (to achieve compact view),
here's a conversion:

Hex - Decimal

- 10
- 11
12 (unused)
- 13 (unused)
- 14 (unused)

http://www itipacinotti.gov.it/pagine/sistemi2008/documentation_emulator/io.html

mgo QW

217

17.12.2014

1/0 ports and Hardware Interrupts

F - 15 (unused)

first operand for OUT instruction is a port humber (4), second operand is a
word (AX) that is written to the port. first operand must be an immediate
byte value (0..255) or DX register. second operand must be AX or AL only.

see also traffic_lights.asm in c:\emu8086\examples.

if required you can read the data from port using IN instruction, for
example:

IN AX, 4
first operand of IN instruction (AX) receives the value from port, second

operand (4) is a port number. first operand must be AX or AL only. second
operand must be an immediate byte value (0..255) or DX register.

Stepper Motor - port 7 (byte)
the stepper motor is controlled by sending data to i/o port 7.

stepper motor is electric motor that can be precisely controlled by signals
from a computer.

the motor turns through a precise angle each time it receives a signal.

by varying the rate at which signal pulses are produced, the motor can be
run at different speeds or turned through an exact angle and then stopped.

This is a basic 3-phase stepper motor, it has 3 magnets controlled by bits
0, 1 and 2. other bits (3..7) are unused.

When magnet is working it becomes red. The arrow in the left upper corner
shows the direction of the last motor move. Green line is here just to see
that it is really rotating.

http://www itipacinotti.gov.it/pagine/sistemi2008/documentation_emulator/io.html 37

17.12.2014 1/0 ports and Hardware Interrupts

2 Stepper Motor on Port 7 ISIEJ|

76543218
BaBap11g

For example, the code below will do three clock-wise half-steps:

MOV AL, 001b ; initialize.
OUT 7, AL

MOV AL, 011b ; half step 1.
OUT 7, AL

MOV AL, 010b ; half step 2.
OUT 7, AL

MOV AL, 110b ; half step 3.
OUT 7, AL

If you ever played with magnets you will understand how it works. try
experimenting, or see stepper_motor.asm in c:\emu8086\examples.

If required you can read the data from port using IN instruction, for
example:

IN AL, 7

Stepper motor sets topmost bit of byte value in port 7 when it's ready.

« Robot - port 9 (3 bytes)

http://www itipacinotti.gov.it/pagine/sistemi2008/documentation_emulator/io.html 4/7

17.12.2014

Robot on Port 9 H =l B3 |

1/0 ports and Hardware Interrupts

Legend:

B &0

@ Robot: ﬂ

Wwiall:

@ Switched-0On Lamp: @

&

Switched-Off Lamp: @

command :

C%Q data:
status:

6543218
dagaana
dapgaaoog
gaoapoon

—Tool Box

The robot is controlled by sending data to i/o port 9.

The first byte (port 9) is a command register. set values to this port to
make robot do something. supported values:

decimal || binary action
value value
0 00000000 || do nothing.
1 00000001 | move forward.
2 00000010 | turn left.
3 00000011 || turn right.
examine. examines an object in front using sensor.
4| 00000100 | hEn rOBot completes the s, result = set o,
set to 1.
5 00000101 || switch on a lamp.
6 00000110 || switch off a lamp.

The second byte (port 10) is a data register. this register is set after robot

completes the examine command:

http://www itipacinotti.gov.it/pagine/sistemi2008/documentation_emulator/io.html

57

17.12.2014 /0 ports and Hardware Interrupts
decimal value || binary value | meaning
255 11111111 wall
0 00000000 nothing
7 00000111 switched-on lamp
8 00001000 switched-off lamp

The third byte (port 11) is a status register. read values from this port to
determine the state of the robot. each bit has a specific property:

bit number || description

bit #0 zero when there is no new data in data register, one
when there is new data in data register.

bit #1 zero when robot is ready for next command, one when
robot is busy doing some task.
zero when there is no error on last command execution,

bit #2 one when there is an error on command execution (when
robot cannot complete the task: move, turn, examine,
switch on/off lamp).

example:

MOV AL, 1 ; move forward.

OUT 9, AL ;

MOV AL, 3 ; turn right.

OUT 9, AL ;

MOV AL, 1 ; move forward.

OUT 9, AL ;

MOV AL, 2 ; turn left.

OUT 9, AL ;

MOV AL, 1 ; move forward.

OUT 9, AL ;

keep in mind that robot is a mechanical creature and it takes some time for

it to complete a task. you should always check bit#1 of status register

before sending data to port 9, otherwise the robot will reject your command

and "busy!" will be shown. see robot.asm in c:\emu8086\examples.

http://www itipacinotti.gov.it/pagine/sistemi2008/documentation_emulator/io.html

6/7

17.12.2014 1/0 ports and Hardware Interrupts

Creating Custom Robo-World Map

It is possible to change the default map for the robot using the tool box.
if you click the robot button and place robot over existing robot it will turn
90 degrees counter-clock-wise. to manually move the robot just place it
anywhere else on the map.

If you click lamp button and click switched-on lamp the lamp will be
switched-off, if lamp is already switched-off it will be deleted. click over
empty space will create a new switched-on lamp.

Placing wall over existing wall deletes the wall.

Current version is limited to a single robot only. if you forget to place a
robot on the map it will be placed in some random coordinates.

When robot device is closed the map is automatically saved inside this file:
c:\emu8086\devices\robot_map.dat

It is possible to have several maps by renaming and coping this file before
starting the robot device.

The right-click over the map brings up a popup menu that allows to switch-
on or switch-off all the lamps at once.

For a list of frequently asked questions click here.

http://www itipacinotti.gov.it/pagine/sistemi2008/documentation_emulator/io.html 77

